postheadericon Годовая контрольная работа по алгебре 11 класс школа России фгос

Вариант 1

Докажите, что функция F(x) = 3х + sin x – e2xявляется первообразной функции f (x) = 3 + cos x – 2e2x на всей числовой оси.
Найдите первообразную F функции f (x) = 2, график которой проходит через точку А(0; ).
Вычислите площадь фигуры, изображенной на рисунке.

Вычислить интеграл: а) dx; б) .
Найдите площадь фигуры, ограниченной прямой у = 1 – 2х и графиком функции у = х2 – 5х – 3.

Вариант 2

Докажите, что функция F(x) = х + cos x + e3xявляется первообразной функции f (x) = 1 — sin x + 3e3x на всей числовой оси.
Найдите первообразную F функции f (x) = — 3, график которой проходит через точку А(0; ).
Вычислите площадь фигуры, изображенной на рисунке.
Вычислить интеграл: а) dx; б) .
Найдите площадь фигуры, ограниченной прямой у = 3 – 2х и графиком функции у = х2 + 3х – 3.

Комментарии запрещены.

Bookmarks